p-group, metabelian, nilpotent (class 3), monomial
Aliases: C22.3M4(2), (C2×C4)⋊C8, (C2×C4).92D4, C22⋊C8.1C2, C22.3(C2×C8), (C22×C4).3C4, C2.4(C22⋊C8), C2.2(C23⋊C4), C23.21(C2×C4), (C22×C4).2C22, C2.1(C4.10D4), C22.20(C22⋊C4), (C2×C4⋊C4).1C2, SmallGroup(64,5)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.M4(2)
G = < a,b,c,d | a2=b2=c8=1, d2=b, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=abc5 >
Character table of C22.M4(2)
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | -i | -i | i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | i | i | -i | -i | -i | linear of order 4 |
ρ9 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | i | -i | 1 | i | -1 | -i | ζ83 | ζ87 | ζ85 | ζ87 | ζ83 | ζ8 | ζ8 | ζ85 | linear of order 8 |
ρ10 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -i | i | 1 | -i | -1 | i | ζ85 | ζ8 | ζ83 | ζ8 | ζ85 | ζ87 | ζ87 | ζ83 | linear of order 8 |
ρ11 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | i | -i | 1 | i | -1 | -i | ζ87 | ζ83 | ζ8 | ζ83 | ζ87 | ζ85 | ζ85 | ζ8 | linear of order 8 |
ρ12 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -i | i | 1 | -i | -1 | i | ζ8 | ζ85 | ζ87 | ζ85 | ζ8 | ζ83 | ζ83 | ζ87 | linear of order 8 |
ρ13 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -i | i | -1 | i | 1 | -i | ζ8 | ζ8 | ζ87 | ζ85 | ζ85 | ζ87 | ζ83 | ζ83 | linear of order 8 |
ρ14 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | i | -i | -1 | -i | 1 | i | ζ83 | ζ83 | ζ85 | ζ87 | ζ87 | ζ85 | ζ8 | ζ8 | linear of order 8 |
ρ15 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | i | -i | -1 | -i | 1 | i | ζ87 | ζ87 | ζ8 | ζ83 | ζ83 | ζ8 | ζ85 | ζ85 | linear of order 8 |
ρ16 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -i | i | -1 | i | 1 | -i | ζ85 | ζ85 | ζ83 | ζ8 | ζ8 | ζ83 | ζ87 | ζ87 | linear of order 8 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | 2 | -2 | -2 | 2 | -2 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
(1 5)(2 26)(3 7)(4 28)(6 30)(8 32)(9 24)(10 14)(11 18)(12 16)(13 20)(15 22)(17 21)(19 23)(25 29)(27 31)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 12 29 23)(2 24 30 13)(3 17 31 14)(4 15 32 18)(5 16 25 19)(6 20 26 9)(7 21 27 10)(8 11 28 22)
G:=sub<Sym(32)| (1,5)(2,26)(3,7)(4,28)(6,30)(8,32)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23)(25,29)(27,31), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12,29,23)(2,24,30,13)(3,17,31,14)(4,15,32,18)(5,16,25,19)(6,20,26,9)(7,21,27,10)(8,11,28,22)>;
G:=Group( (1,5)(2,26)(3,7)(4,28)(6,30)(8,32)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23)(25,29)(27,31), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12,29,23)(2,24,30,13)(3,17,31,14)(4,15,32,18)(5,16,25,19)(6,20,26,9)(7,21,27,10)(8,11,28,22) );
G=PermutationGroup([[(1,5),(2,26),(3,7),(4,28),(6,30),(8,32),(9,24),(10,14),(11,18),(12,16),(13,20),(15,22),(17,21),(19,23),(25,29),(27,31)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,12,29,23),(2,24,30,13),(3,17,31,14),(4,15,32,18),(5,16,25,19),(6,20,26,9),(7,21,27,10),(8,11,28,22)]])
C22.M4(2) is a maximal subgroup of
C42.371D4 C42.394D4 C42.42D4 C42.44D4 C42.396D4 C42.372D4 (C2×C20)⋊1C8 (C22×C4).F5
(C2×C4).D4p: C2.C2≀C4 (C2×C4).D8 (C2×C4).5D8 (C2×Dic3)⋊C8 (C2×Dic5)⋊C8 (C2×Dic7)⋊C8 ...
(C22×C4).D2p: (C2×D4)⋊C8 (C2×C42).C4 C42⋊C8 C42⋊3C8 (C2×C4).Q16 C2.7C2≀C4 C23.8M4(2) (C2×C4)⋊M4(2) ...
C22.M4(2) is a maximal quotient of
C4⋊C4⋊C8 C23.19C42 C42⋊C8 C42⋊3C8 C23.2M4(2) (C2×C20)⋊1C8 (C22×C4).F5
(C2×C4p).D4: C22.M5(2) C23.7M4(2) C42.C8 C22⋊C4.C8 (C2×Dic3)⋊C8 (C2×C12)⋊C8 (C2×Dic5)⋊C8 (C2×C20)⋊C8 ...
Matrix representation of C22.M4(2) ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 4 | 13 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 8 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 12 | 9 | 6 |
0 | 0 | 3 | 14 | 8 | 7 |
0 | 0 | 14 | 12 | 0 | 0 |
0 | 0 | 0 | 9 | 2 | 15 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 14 | 0 | 0 |
0 | 0 | 3 | 5 | 0 | 0 |
0 | 0 | 5 | 12 | 9 | 6 |
0 | 0 | 2 | 0 | 9 | 8 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,4,0,0,0,1,0,13,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,9,0,0,0,0,8,0,0,0,0,0,0,0,5,3,14,0,0,0,12,14,12,9,0,0,9,8,0,2,0,0,6,7,0,15],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,12,3,5,2,0,0,14,5,12,0,0,0,0,0,9,9,0,0,0,0,6,8] >;
C22.M4(2) in GAP, Magma, Sage, TeX
C_2^2.M_4(2)
% in TeX
G:=Group("C2^2.M4(2)");
// GroupNames label
G:=SmallGroup(64,5);
// by ID
G=gap.SmallGroup(64,5);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,2,48,73,103,362,297,117]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=1,d^2=b,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a*b*c^5>;
// generators/relations
Export
Subgroup lattice of C22.M4(2) in TeX
Character table of C22.M4(2) in TeX